Answer:
No, a regular pentagon does not tessellate.
In a tessellation, all the angles at a point have to add to 360 degrees, as this means there is no overlap, nor are there gaps. To find the interior angle sum of a pentagon, we use the following formula:
(n-2)*180 (where n is the number of sides)
We plug in the number of sides (5) and get:
Angle sum = (5–2)*180
Angle sum = 3*180
Angle sum = 540
Regular pentagons have equal sides and equal angles, so to find the size of the interior angle of a pentagon, we divide the angle sum by 5 and get 108 degrees for every angle.
As I said before, the angles at a point need to add up to 360, so we need to know if 108 divides evenly into 360. If it does, the shape tessellates, and, if it doesn’t, the shape does not.
360/108 = 3.33333…
This means that a regular pentagon does not tessellate.
Hope this helps!
Answer:
take the numbers and do the equation steps then fill the box in
Step-by-step explanation:
Answer: 13
Step-by-step explanation:
I used Pythagorean theorem to solve this problem. As DC and AD is 12 and 5, you would do 12²+5²= c². 12²= 144 and 5²= 25. 144+25= 169. It doesn't end there. Do the square root of 169 ---> √169=13.
P(3) = 1/8
P(5)=1/8
Events are independent.
P(3, then 5) = 1/8 *1/8 =1/16
Answer is 1/16.
Answer:uhmmmmmmmmmmmmmm
Step-by-step explanation: