Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
The frequency produced by the string could be 437 Hz or it could be 443 Hz.
The frequency of the beats ... 3 Hz ... tells the piano tuner that
the difference between the fork and string frequencies is 3 Hz,
but it doesn't tell her which one is higher or lower.
I believe the answer should be the last option. upon interaction, both objects should have the same charge after the electrons are transferred.