Answer:
5 x 3 + 3 divided by 6 = 3
Step-by-step explanation:
The first thing is to find a way to arrange the numbers. Try every operation until you can get the answer. for this case, i put the answer above.
First you must multiply the number by the percent. (19*27= 513)
Then you divide the answer by 100, or move decimal two places to the left. (513/100= 5.13)
Then round to the nearest whole number (5.13 is approximately 5)
Therefore 19%of 27 = 5
:)
<h3>Given</h3>
a cuboid with length, width, height dimensions 5, 6, x
<h3>Find</h3>
the value of x that makes the numerical value of the total surface area equal to the numerical value of the volume
<h3>Solution</h3>
The volume is given by
... V = L·W·H = 5·6·x = 30x
The area is given by
... A = 2(L·W + H(L+W)) = 2(5·6 +x(5+6)) = 2(30 +11x) = 60 +22x
When these are equal, we have
... 30x = 60 +22x
... 8x = 60
... x = 7.5
The desired value of x is 7.5.
The radius of the table top is 206 when rounded to the nearest centimeters
Answer:
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

The proportion of infants with birth weights between 125 oz and 140 oz is
This is the pvalue of Z when X = 140 subtracted by the pvalue of Z when X = 125. So
X = 140



has a pvalue of 0.9772
X = 125



has a pvalue of 0.8413
0.9772 - 0.8413 = 0.1359
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.