1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
3 years ago
10

Solve each equation by graphing the related function. If the equation has no real-number solution, write no solution. 1/4x^2-4=0

Mathematics
1 answer:
quester [9]3 years ago
3 0
The answer is B.

I hope this helps. :)
You might be interested in
2x-1/3=5 what are the solutions
asambeis [7]
Solution is (2.667,0) but x=2.667

6 0
3 years ago
10 3 -4 -11. arithmetic or geometric​
Dominik [7]

Answer:

Arithmetic (sequence?)

Step-by-step explanation:

Is arithmetic because the differences of each number is a constant -7

4 0
3 years ago
Read 2 more answers
Hord
Tomtit [17]

Answer:

The volume of the space outside the pyramid but inside the prism is 225 cubic centimeters.

Step-by-step explanation:

To find this, you subtract the volume of the pyramid from the volume of the rectangular prism.

The prism and pyramid's bases is 25 cm²

The pyramid's height is 12÷2 or 6 cm

The volume formula for a prism is l×w×h

The volume formula for a pyramid is \frac{1}{3} ×b×h

The area of the prism is 5×5×12 or 300 cm³

The area of the pyramid is \frac{1}{3} *25*6 or 75 cm³

300 cm³-75 cm³=225 cm³

The volume outside the pyramid but inside the prism is 225 cm³.

3 0
3 years ago
The problem is attached, thanks.
NeX [460]

Answer:

\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sqrt{x} - \sqrt{y} = -1

Point (1, 4)

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               \displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1
  2. [Implicit Differentiation] Basic Power Rule:                                                 \displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0
  3. [Implicit Differentiation] Simplify Exponents:                                               \displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:                   \displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0
  5. [Implicit Differentiation] Isolate <em>y</em> terms:                                                       \displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}
  6. [Implicit Differentiation] Isolate \displaystyle \frac{dy}{dx}:                                                               \displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}
  7. [Implicit Differentiation] Simplify:                                                                 \displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}

<u>Step 3: Evaluate</u>

  1. Substitute in point [Derivative]:                                                                     \displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}
  2. Exponents:                                                                                                     \displaystyle \frac{dy}{dx} = \frac{2}{1}
  3. Division:                                                                                                         \displaystyle \frac{dy}{dx} = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

6 0
3 years ago
The bar diagram shows the fractional parts of a lawn that Troy and Kylie mowed.
aniked [119]

Answer:

Step-by-step explanation:

Do you have a pdf or something

6 0
3 years ago
Other questions:
  • At an apple orchard Margaret picked 19 1/2 Pounds of apples the cashier put the apples in the three bags with the same weight Ho
    14·2 answers
  • Find the first five terms of each arithmetic sequence. a1=210, d= -40
    7·1 answer
  • 7p-(3p+4)= -2(2p-1) + 10<br> Solve each equation.
    9·1 answer
  • Draw a quick picture to show the number 24. Then draw a quick picture to show 24 after you have regrouped ten as ones. Explain h
    5·1 answer
  • The coordinates of a particle in the metric xy-plane are differentiable functions of time t with:
    9·1 answer
  • Charles purchased a car, fixed it and marked it up 20%. He later sold the car for $21,500. Calculate the original price that Cha
    14·1 answer
  • What is the product?<br><br> (6) (negative 12)<br> –82<br> –72<br> 72<br> 82
    9·2 answers
  • What’s the measure of angle X?
    6·1 answer
  • Compare the decimals (and turn them into unlike decimals)
    6·2 answers
  • HELPPP ASAP PLSSS!!!!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!