1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bagirrra123 [75]
3 years ago
5

At the beginning of the period, the Cutting Department budgeted direct labor of $46,300 and supervisor salaries of $37,200 for 4

,630 hours of production. The department actually completed 5,000 hours of production.
Mathematics
1 answer:
Korvikt [17]3 years ago
4 0

Answer:

$87200

Step-by-step explanation:

Here is the complete question:

At the beginning of the period, the Cutting Department budgeted direct labor of $46,300 and supervisor salaries of $37,200 for 4,630 hours of production. The department actually completed 5,000 hours of production.

Determine the budget of the department assuming that it uses flexible budgeting?

Given: Budget for direct labour= $46300

           Supervisor salaries= $37200

           Expected production hours= 4630 hours

           Completed production hours= 5000 hours

Now, we know that company budget include both fixed and variable cost.

∴ Direct labour cost is a variable cost and Supervisor salaries are fixed cost.

Using flexible budgeting for determining the budget of department, we will pro rate the direct labour cost on the basis of production hours.

Direct labour= Budget\times \frac{completed\ production\ hours}{expected\ production\ hours}

Direct labour= 46300\times \frac{5000}{4630}

∴ Direct labour= $50000

we know the department budget = Fixed cost+variable cost

∴ Department budget= \$ 37200+\$ 50000 = \$ 87200

∴ The department budget is $87200.

You might be interested in
The coordinates of the vertices of​ quadrilateral ABCD​ are A(−4, −1), B(−1, 2), C(5, 1), and D(1, −3).
serg [7]

Answer:

Sorry this is late, but it could help future people. Answers are in the picture.

Step-by-step explanation:

I took the quiz. :)

3 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
Simplify (6g4h5)2<br> What is the answer
SVETLANKA909090 [29]

Answer:

12g8h10

Multiply each variable quantity by 2 and combine.

6 0
2 years ago
In the table, Pattern A uses the rule "add 3" and Pattern B uses the rule "add 9."
Paladinen [302]
Statement 1 is true.
-Hope this helps, have a nice day! :)
6 0
3 years ago
A line passes through (9,5) and (12,-13). Write the equation of the line in standard form.
matrenka [14]
I think the answers B?
4 0
3 years ago
Other questions:
  • Which situation is best represented by the following equation?<br> 45w + 123.95<br> 753.95
    5·1 answer
  • Assume that SAT scores are normally distributed with mean mu equals 1518 and standard deviation sigma equals 325. If 1 SAT score
    6·1 answer
  • BRAINLIEST PLEASE HELP ASAP!!!!
    5·1 answer
  • Please answer this correctly
    12·2 answers
  • 4y+5+3y= what...?please help me ​
    5·1 answer
  • Hi can any one please help me I really need help please please let me know ya
    11·1 answer
  • Does anybody know how to do this stuff
    5·1 answer
  • Kayla left a pile of gummy bears in the sun. After several hours 12 melted. This accounted for 40% of the total number. How many
    15·2 answers
  • From 1990 to 2000, the number of visits by the people to Bryce Canyon National Park increased by about 23.9 thousand visits per
    9·1 answer
  • What is a good name for a pretty blonde girl? (don't ask hehe)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!