1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
11

PLEASE HELP!!!!! Last question

Mathematics
2 answers:
Olin [163]3 years ago
8 0

Answer:

103

Step-by-step explanation:

To solve this you first have to find the complement to he 110 degree angle (z). You do this by subtracting 180-110 to get z=70 degrees. Next, because its a four sided figure you know the total angle sum should equal 360. Therefore, 360-100-87-70=angle y. Angle y= 103 degrees. Hope this helps

Sunny_sXe [5.5K]3 years ago
5 0

Answer: 103

Step-by-step explanation:

You might be interested in
Jason receives some money for his birthday. He spends 15 of the money and has $14.40 left. Calculate how much money he received
Tasya [4]
He had $14.40 + $15 =39.40
3 0
3 years ago
Find x in the parallelogram OA =(X+23) IN ; OC=31 in
ddd [48]
82 Europe dduuxhxxhhchcch
3 0
3 years ago
Is this correct? I will give brainliest to the correct answer
tankabanditka [31]
Oh yeah, now give me branliest.
5 0
3 years ago
Read 2 more answers
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
1 year ago
Weekly math homework - April 17-21
kenny6666 [7]
OK so where is the weekly math homework!?
6 0
3 years ago
Read 2 more answers
Other questions:
  • Zoe keeps track of the miles per gallon her car gets per week. She has accumulated the following data: (1, 24), (2, 24.38), (3,
    5·1 answer
  • 5.372 divided by 2 = please help
    11·2 answers
  • Here is the second one thanks for the help!
    10·2 answers
  • The best fit line must go through all data points on a graph. TRUE OR FALSE
    12·1 answer
  • If f(x)=x*−81 and g(x)=(x−9)−1(x+9), find g(x)×f(x).
    13·1 answer
  • W/6<11 solve and what is the solution? ​
    15·2 answers
  • What is the slope of (5,2) and (3,0)
    11·1 answer
  • Domain and range problem help please
    5·1 answer
  • I need help please explain
    8·2 answers
  • I need help... lol it feels wierd to ask
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!