1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
4 years ago
8

Help on numbers 1 and 2 any question, 1 or 2.

Mathematics
1 answer:
geniusboy [140]4 years ago
6 0
For #2 you would count how many where the red dashed line is! Which is 3! Then you would count where the blue dashed line is! Which is 4! So then it would be 4/3(4 over 3) For the slope! Hope this helps! :)
You might be interested in
4.96 equal or grater than 0.496
Zepler [3.9K]
4.96 is greater than 0.496
6 0
4 years ago
Read 2 more answers
Researchers studying the sticky droplets found on spider webs will measure the widths of a random sample of droplets. From the s
Leno4ka [110]

Answer:

The interval will be narrower if the researchers increase the sample size of droplets.

Step-by-step explanation:

The confidence interval can be obtained using the relation :

Xbar ± Margin of error

Margin of Error = Zcrit * s/sqrt(n)

Zcritical = critical vlaue at the specified α - level

n = sample size ; s = standard deviation

Sample size being the denominator, will reduce the overall value of the error margin as we utilize a larger sample.

Hence, the interval becomes narrower as the error margin is reduced which is achieved by employing an increased sample size.

3 0
3 years ago
Use (a) the midpoint rule and (b) simpson's rule to approximate the below integral. ∫ x^2sin(x) dx with n = 8.
MaRussiya [10]

Answer:

midpoint rule =  5.93295663

simpson's rule = 5.869246855

Step-by-step explanation:

a) midpoint rule

\int\limits^b_a {(x)} \, dx≈ Δ x (f(x₀+x₁)/2 + f(x₁+x₂)/2 + f(x₂+x₃)/2 +...+ f(x_{n}_₂+x_{n}_₁)/2 +f(x_{n}_₁+x_{n})/2)

Δx = (b − a) / n

We have that a = 0, b = π, n = 8

Therefore

Δx = (π − 0) / 8 = π/8

Divide the interval [0,π] into n=8 sub-intervals of length Δx = π/8 with the following endpoints:

a=0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8, π = b

Now, we just evaluate the function at these endpoints:

f(\frac{x_{0}+x_{1}  }{2} ) = f(\frac{0+\frac{\pi}{8}   }{2} ) = f(\frac{\pi }{16})=\frac{\pi^{2}sin(\frac{\pi }{16})  }{256} = 0.00752134

f(\frac{x_{1}+x_{2}  }{2} ) = f(\frac{\frac{\pi }{8} +\frac{\pi}{4}   }{2} ) = f(\frac{3\pi }{16})=\frac{9\pi ^{2} sin(\frac{3\pi }{16}) }{256} = 0.19277080

f(\frac{x_{2}+x_{3}  }{2} ) = f(\frac{\frac{\pi }{4} +\frac{3\pi}{8}   }{2} ) = f(\frac{5\pi }{16})=\frac{25\pi ^{2} sin(\frac{5\pi }{16}) }{256} = 0.80139415

f(\frac{x_{3}+x_{4}  }{2} ) = f(\frac{\frac{3\pi }{8} +\frac{\pi}{2}   }{2} ) = f(\frac{7\pi }{16})=\frac{49\pi ^{2} sin(\frac{7\pi }{16}) }{256} = 1.85280536

f(\frac{x_{4}+x_{5}  }{2} ) = f(\frac{\frac{\pi }{2} +\frac{5\pi}{8}   }{2} ) = f(\frac{9\pi }{16})=\frac{81\pi ^{2} sin(\frac{7\pi }{16}) }{256} = 3.062800704

f(\frac{x_{5}+x_{6}  }{2} ) = f(\frac{\frac{5\pi }{8} +\frac{3\pi}{4}   }{2} ) = f(\frac{11\pi }{16})=\frac{121\pi ^{2} sin(\frac{5\pi }{16}) }{256} = 3.878747709

f(\frac{x_{6}+x_{7}  }{2} ) = f(\frac{\frac{3\pi }{4} +\frac{7\pi}{8}   }{2} ) = f(\frac{13\pi }{16})=\frac{169\pi ^{2} sin(\frac{3\pi }{16}) }{256} = 3.61980731

f(\frac{x_{7}+x_{8}  }{2} ) = f(\frac{\frac{7\pi }{8} +\pi    }{2} ) = f(\frac{15\pi }{16})=\frac{225\pi ^{2} sin(\frac{\pi }{16}) }{256} = 1.69230261

Finally, just sum up the above values and multiply by Δx = π/8:

π/8 (0.00752134 +0.19277080+ 0.80139415 + 1.85280536 + 3.062800704 + 3.878747709 + 3.61980731 + 1.69230261) = 5.93295663

b) simpson's rule

\int\limits^b_a {(x)} \, dx  ≈ (Δx)/3 (f(x₀) + 4f(x₁) + 2f(x₂) + 4f(x₃) + 2f(x₄) + ... + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}))

where Δx = (b−a) / n

We have that a = 0, b = π, n = 8

Therefore

Δx = (π−0) / 8 = π/8

Divide the interval [0,π] into n = 8 sub-intervals of length Δx = π/8, with the following endpoints:

a = 0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8 ,π = b

Now, we just evaluate the function at these endpoints:  

f(x₀) = f(a) = f(0) = 0 = 0

4f(x_{1} ) = 4f(\frac{\pi }{8} )=\frac{\pi^{2}\sqrt{\frac{1}{2}-\frac{\sqrt{2} }{4}   }  }{16} = 0.23605838

2f(x_{2} ) = 2f(\frac{\pi }{4} )=\frac{\sqrt{2\pi^{2}  } }{16} = 0.87235802

4f(x_{3} ) = 4f(\frac{3\pi }{8} )=\frac{9\pi^{2}\sqrt{\frac{\sqrt{2} }{4}-\frac{{1} }{2}   }  }{16} = 5.12905809

2f(x_{4} ) = 2f(\frac{\pi }{2} )=\frac{\pi ^{2} }{2} = 4.93480220

4f(x_{5} ) = 4f(\frac{5\pi }{8} )=\frac{25\pi^{2}\sqrt{\frac{\sqrt{2} }{4}-\frac{{1} }{2}   }  }{16} = 14.24738359

2f(x_{6} ) = 2f(\frac{3\pi }{4} )=\frac{9\sqrt{2\pi^{2}  } }{16} = 7.85122222

4f(x_{7} ) = 4f(\frac{7\pi }{8} )=\frac{49\pi^{2}\sqrt{\frac{1}{2}-\frac{\sqrt{2} }{4}   }  }{16} = 11.56686065

f(x₈) = f(b) = f(π) = 0 = 0

Finally, just sum up the above values and multiply by Δx/3 = π/24:

π/24 (0 + 0.23605838 + 0.87235802 + 5.12905809 + 4.93480220 + 14.24738359 + 7.85122222 + 11.56686065 = 5.869246855

7 0
3 years ago
Cole drew a rectangle that is 3 meters by 10 meters. It has an area of 30 square meters and a perimeter of 26 meters.
algol [13]
B) 7 metres by 6 metres
7 0
3 years ago
Read 2 more answers
Can someone help me with this question?
Salsk061 [2.6K]
Angle 4 is the same as angle 6, 75 degrees, there are alternate interior angles.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Demonstrate that there is approximately 16% probability (P) of finding the ground state harmonic oscillator displaced beyond the
    7·1 answer
  • Use the gcf and distrubutive property to express the sum as a product for 18+24
    9·1 answer
  • Select the term that best describes the statement. Geometry is fun or ducks do not like water. conjunction disjunction negation
    13·2 answers
  • Please help: 3x + 4x - 3 = 81 solve for x
    6·2 answers
  • Can 231,000 be written as 0.23
    13·1 answer
  • When written in standard form, the quadratic equation, x2 - 2x - 35 = 0, is equivalent to y = (x - 1)2 - 36. What is the vertex
    13·1 answer
  • Please help me I will give you the brain thing with extra points, please help me. 1/5
    9·2 answers
  • I need help on how to answer this if anyone knows how to please respond. Thank you!
    5·1 answer
  • The original price of a DVD is $25. The price is marked down 17% each month.
    15·1 answer
  • At 6 pm in Edinburgh on Sunday it was 3° C. By 6 am the next morning the temperature had fallen by 7° C. What will the temperatu
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!