Answer:
-1 1/2
Step-by-step explanation:
Answer:
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Step-by-step explanation:
Let X the random variable that represent the number of admisions at the universit, and we have this probability distribution given:
X 1060 1400 1620
P(X) 0.5 0.1 0.4
In statistics and probability analysis, the expected value "is calculated by multiplying each of the possible outcomes by the likelihood each outcome will occur and then summing all of those values".
The variance of a random variable Var(X) is the expected value of the squared deviation from the mean of X, E(X).
And the standard deviation of a random variable X is just the square root of the variance.
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Answer:
Step-by-step explanation:
First and foremost, all quadratics have a domain of all real numbers (as long as we are not given only a portion of the graph, or one with endpoints. Our graph does not have endpoints, so it is assumed that the tails will continue to go down into negative infinity and at the same time, the x coordinates will keep growing as well.) Since our quadratic is upside down, it has a max. That means that none of the values on the graph will be above that point. All the values will be below that highest point (the highest y-value). Y-values indicate range, and since our highest y-value is at y = 2, then the range is
y ≤ 2
This game is not fair. No one will know wha their going to get. It is a game of probability