Answer:
They say that the sum of the two numbers (x and y) is 64, so we can write our first equation by adding them and setting that sum equal to 64:
x + y = 64
The question also tells us that their difference is 14. Similarly to before, we'll just subtract the two numbers and set that difference equal to 14:
x - y = 14
Now from here, you know how to continue with substitution to find the values for x and y. Just remember when you get a word problem to break it down and look for key words like sum, difference, or product, and from there you'll be able to build your system of equations.
f(x) = (x - 4)^2 - 1
g(x) = -(1/4) ( x - 4)^2 + 4
both the x and y values have to be the same. Start with the y values
f(x) = g(x)
(x - 4)^2 - 1 = -(1/4) (x - 4)^2 + 4 Add 1 to both sides.
(x - 4)^2 = -(1/4) (x - 4)^2 + 5 Add 1/4(x - 4)^2 to both sides.
(5/4) (x - 4)^2 = 5 Divide by 5/4 on both sides.
(x - 4)^2 = 5//(5/4)
(x - 4)^2 = (5/1)//5/4 Invert the second fraction and multiply
(x - 4)^2 = 5/1 * 4/5
(x - 4)^2 = 4 The 5s cancel
(x - 4)^2 = 4 Take the square root of both sides.
(x - 4) = +/- 2 Add 4 to each answer. Start with +2 on the right.
x - 4 + 4 = 2 + 4
x = 4 + 2 = 6
The x value that makes f(x)- g(x) = 0 is x = 6 The point is (6,3) answer.
Answer C.
================================================
You do not need this next part. It is just for completeness.
x - 4 = - 2
x = 4 -2
x = 2
What are the y values for these 2 x values?
y = (x - 4)^2 - 1
y = (6 - 4)^2 - 1
y = 4 - 1
y = 3
The point where f(x) - g(x) = 0 is (6,3) <<<<<< Answer 1
The second point is
y = (x - 4)^2 - 1
y = (2 - 4)^2 - 1
y = (-2)^2 - 1
y = 4 - 1
y = 3
The second point is (2,3). Answer 2
Note the y values are the same. You might expect that.
The solid figure is represented by the second option.
Step-by-step explanation:
- The solid figure in the question is a cuboid.
- On opening, it will have 6 faces, each of which will be a rectangle.
- All the corners or edges will have 90° or right angles.
- Also, on opening, one side will have 2 other faces attached to it on top and bottom which is seen in the second figure.