The measures of spread include the range, quartiles and the interquartile range, variance and standard deviation. Let's consider each one by one.
<u>Interquartile Range: </u>
Given the Data -> First Quartile = 2, Third Quartile = 5
Interquartile Range = 5 - 2 = 3
<u>Range:</u> 8 - 1 = 7
<u>Variance: </u>
We start by determining the mean,

n = number of numbers in the set
Solving for the sum of squares is a long process, so I will skip over that portion and go right into solving for the variance.

5.3
<u>Standard Deviation</u>
We take the square root of the variance,

2.3
If you are not familiar with variance and standard deviation, just leave it.
Answer:
Step-by-step explanation:
41
Answer:
A)1050
B)8050
Step-by-step explanation:
to find interest we use the formula A= P(1+rt) where P is the initial investment, r is the rate percent, and t is the time interval
for this question we have A=7000(1+3(5)) which gives 8,050 dollars which is the answer to part B
for part A we simply subtract the answer from B from the initial investment so 8050 - 7000 = 1050 made from interest
Answer:
<h2>36b + 60c</h2>
Step-by-step explanation:
Put a = 6 to the expression 2a(3b + 5c):
(2)(6)(3b + 5c) = 12(3b + 5c) <em>use the distributive property</em>
= (12)(3b) + (12)(5c) = 36b + 60c
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:
