Answer: About
Step-by-step explanation:
The missing figure is attached.
Notice in the first picture that Alberta has a complex shape.
You can calculate the area of a complex shape by decomposing it into polygons whose areas can be calculated easily.
Observe the second picture. Notice that it can be descompose into two polygons: A trapezoid and a rectangle.
The area of the trapezoid can be calcualted with the formula:

Where "h" is the height, "B" is the long base and "b" is short base.
And the area of the rectangle can be found with the formula:

Wkere "l" is the lenght and "w" is the width.
Then, the apprximate area of Alberta is:

Substituting vallues, you get:

Therefore, the area of of Alberta is about
.
Answer:
The radius of the inner circle is 14 ft. Since the outer circle is 3 ft more than the inner circle, its radius is 17 ft. The circumference formula is 2(pi)radius (or 2(22/7)17 in this case). The circumference of the outer circle is 106.85 ft (or 106.9 if rounding). To find the difference, you would subtract the smallest FROM the greatest:
106.85 - 88 = 18.85 ft (or 18.9 if rounding)
A
They are Corresponding angles
Mark brainliest please
I just copied and pasted your question on google and a graph came up it may not be the answer but i tried...
Answer:
False. All triangles must have a total of 180°. 60° + 60° + 70° = 190°.