Answer:
![x=-1,\:x=-7,\:x=i,\:x=-i](https://tex.z-dn.net/?f=x%3D-1%2C%5C%3Ax%3D-7%2C%5C%3Ax%3Di%2C%5C%3Ax%3D-i)
Step-by-step explanation:
Considering the equation
![x^4+8x^3+8x^2+8x+7=0](https://tex.z-dn.net/?f=x%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7%3D0)
Solving
![x^4+8x^3+8x^2+8x+7](https://tex.z-dn.net/?f=x%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7)
![\mathrm{Factor\:}x^4+8x^3+8x^2+8x+7:\quad \left(x+1\right)\left(x+7\right)\left(x^2+1\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BFactor%5C%3A%7Dx%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7%3A%5Cquad%20%5Cleft%28x%2B1%5Cright%29%5Cleft%28x%2B7%5Cright%29%5Cleft%28x%5E2%2B1%5Cright%29)
As
![\mathrm{Use\:the\:rational\:root\:theorem}](https://tex.z-dn.net/?f=%5Cmathrm%7BUse%5C%3Athe%5C%3Arational%5C%3Aroot%5C%3Atheorem%7D)
![a_0=7,\:\quad a_n=1](https://tex.z-dn.net/?f=a_0%3D7%2C%5C%3A%5Cquad%20a_n%3D1)
![\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:7,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1](https://tex.z-dn.net/?f=%5Cmathrm%7BThe%5C%3Adividers%5C%3Aof%5C%3A%7Da_0%3A%5Cquad%201%2C%5C%3A7%2C%5C%3A%5Cquad%20%5Cmathrm%7BThe%5C%3Adividers%5C%3Aof%5C%3A%7Da_n%3A%5Cquad%201)
![\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:7}{1}](https://tex.z-dn.net/?f=%5Cmathrm%7BTherefore%2C%5C%3Acheck%5C%3Athe%5C%3Afollowing%5C%3Arational%5C%3Anumbers%3A%5Cquad%20%7D%5Cpm%20%5Cfrac%7B1%2C%5C%3A7%7D%7B1%7D)
![-\frac{1}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+1](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1%7D%5Cmathrm%7B%5C%3Ais%5C%3Aa%5C%3Aroot%5C%3Aof%5C%3Athe%5C%3Aexpression%2C%5C%3Aso%5C%3Afactor%5C%3Aout%5C%3A%7Dx%2B1)
![=\left(x+1\right)\frac{x^4+8x^3+8x^2+8x+7}{x+1}...[A]](https://tex.z-dn.net/?f=%3D%5Cleft%28x%2B1%5Cright%29%5Cfrac%7Bx%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7%7D%7Bx%2B1%7D...%5BA%5D)
Solving
![\frac{x^4+8x^3+8x^2+8x+7}{x+1}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7%7D%7Bx%2B1%7D)
![=x^3+7x^2+x+7](https://tex.z-dn.net/?f=%3Dx%5E3%2B7x%5E2%2Bx%2B7)
Putting
=
in equation [A]
So,
![\left(x+1\right)\frac{x^4+8x^3+8x^2+8x+7}{x+1}...[A]](https://tex.z-dn.net/?f=%5Cleft%28x%2B1%5Cright%29%5Cfrac%7Bx%5E4%2B8x%5E3%2B8x%5E2%2B8x%2B7%7D%7Bx%2B1%7D...%5BA%5D)
![=\left(x+1\right)x^3+7x^2+x+7](https://tex.z-dn.net/?f=%3D%5Cleft%28x%2B1%5Cright%29x%5E3%2B7x%5E2%2Bx%2B7)
As
![x^3+7x^2+x+7=\left(x+7\right)\left(x^2+1\right)](https://tex.z-dn.net/?f=x%5E3%2B7x%5E2%2Bx%2B7%3D%5Cleft%28x%2B7%5Cright%29%5Cleft%28x%5E2%2B1%5Cright%29)
So,
Equation [A] becomes
![=\left(x+1\right)\left(x+7\right)\left(x^2+1\right)](https://tex.z-dn.net/?f=%3D%5Cleft%28x%2B1%5Cright%29%5Cleft%28x%2B7%5Cright%29%5Cleft%28x%5E2%2B1%5Cright%29)
So, the polynomial equation becomes
![\left(x+1\right)\left(x+7\right)\left(x^2+1\right)=0](https://tex.z-dn.net/?f=%5Cleft%28x%2B1%5Cright%29%5Cleft%28x%2B7%5Cright%29%5Cleft%28x%5E2%2B1%5Cright%29%3D0)
![\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BUsing%5C%3Athe%5C%3AZero%5C%3AFactor%5C%3APrinciple%3A%5Cquad%20%5C%3AIf%7D%5C%3Aab%3D0%5C%3A%5Cmathrm%7Bthen%7D%5C%3Aa%3D0%5C%3A%5Cmathrm%7Bor%7D%5C%3Ab%3D0%5C%3A%5Cleft%28%5Cmathrm%7Bor%5C%3Aboth%7D%5C%3Aa%3D0%5C%3A%5Cmathrm%7Band%7D%5C%3Ab%3D0%5Cright%29)
![\mathrm{Solve\:}\:x+1=0:\quad x=-1](https://tex.z-dn.net/?f=%5Cmathrm%7BSolve%5C%3A%7D%5C%3Ax%2B1%3D0%3A%5Cquad%20x%3D-1)
![\mathrm{Solve\:}\:x+7=0:\quad x=-7](https://tex.z-dn.net/?f=%5Cmathrm%7BSolve%5C%3A%7D%5C%3Ax%2B7%3D0%3A%5Cquad%20x%3D-7)
![\mathrm{Solve\:}\:x^2+1=0:\quad x=i,\:x=-i](https://tex.z-dn.net/?f=%5Cmathrm%7BSolve%5C%3A%7D%5C%3Ax%5E2%2B1%3D0%3A%5Cquad%20x%3Di%2C%5C%3Ax%3D-i)
![\mathrm{The\:solutions\:are}](https://tex.z-dn.net/?f=%5Cmathrm%7BThe%5C%3Asolutions%5C%3Aare%7D)
![x=-1,\:x=-7,\:x=i,\:x=-i](https://tex.z-dn.net/?f=x%3D-1%2C%5C%3Ax%3D-7%2C%5C%3Ax%3Di%2C%5C%3Ax%3D-i)
Keywords: polynomial equation
Learn polynomial equation from brainly.com/question/12240569
#learnwithBrainly
7(n - p) + 5p
7n - 7p + 5p
7n - 2p
Answer: I need help
Step-by-step explanation: