Answer:
9300 maybe
Step-by-step explanation:
Hello,
1. Since Angle C has the longest side for this triangle, it will have the largest degree value.
2. Use the Law of Cosines and inverse properties of “theta” to solve for Angle C. (Ensure that the calculator used is in “degree mode”, not “radian mode”.
c^2 = a^2 + b^2 - 2(a)(b)(cos (C))
15^2 = 11^2 + 14^2 - 2(11)(14)(cos(C))
225 - 317 = -2(11)(14)(cos(C))
-92 / -2(11)(14) = cos(C)
cos(C) becomes ->> cos^-1[92 /-2(11)(14)] = 72.62° ->> to the nearest degree is 73°
The answer for angle C, 73°, is logical because the triangle in the picture represents a 60-60-60 triangle, known as an equilateral triangle.
Good luck to you!
You replace the y with f(x)
So it becomes f(x)=2x+1
So, we know the center is at -3,-1, ok
hmmm what's the radius anyway? well, we know that there's a point at 1,2 that is on the circle's path...hmmmm what's the distance from the center to that point? well, is the radius, let's check then.
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -3}}\quad ,&{{ -1}})\quad % (c,d) &({{ 1}}\quad ,&{{ 2}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ r=\sqrt{[1-(-3)]^2+[2-(-1)]^2}\implies r=\sqrt{(1+3)^2+(2+1)^2} \\\\\\ r=\sqrt{16+9}\implies r=\sqrt{25}\implies r=5](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-3%7D%7D%5Cquad%20%2C%26%7B%7B%20-1%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%201%7D%7D%5Cquad%20%2C%26%7B%7B%202%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ar%3D%5Csqrt%7B%5B1-%28-3%29%5D%5E2%2B%5B2-%28-1%29%5D%5E2%7D%5Cimplies%20r%3D%5Csqrt%7B%281%2B3%29%5E2%2B%282%2B1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ar%3D%5Csqrt%7B16%2B9%7D%5Cimplies%20r%3D%5Csqrt%7B25%7D%5Cimplies%20r%3D5)
so, what's the equation of a circle with center at -3, -1 and a radius of 5?