(-5/6)x(-2/3)
Answer will be positive sign because : -negative sign and -negative equals to +positive sign
-5/6 *-2/3
Cross out 6 and -2, divide by 2. 6/2=3, -2/2=-1
-5/3*-1/3=5/9
Answer: 5/9
Answer:
L=4.30cm
SA= 110.94cm^2
Step-by-step explanation:
Given data
Volume of box= 80 cm^3
We know that the volume of a box is given as
V= l^3
80=l^3
l= ∛80
l= 4.30cm
also the surface area of a box is given as
SA=2lw+2lh+2hw
SA= 2* 4.30* 4.30+2* 4.30* 4.30+ 2* 4.30* 4.30
SA= 36.98+36.98+36.98
SA= 110.94cm^2
Answer:
9.99 years
Step-by-step explanation:
P=$3,500
r=7%=0.07
n=4(quarterly)
A= double of $3,500=
$3,500×2=$7,000
t=?
A=p(1+r/n)^nt
$7,000=$3,500(1+0.07/4)^4t
$7,000=$3,500(1+0.0175)^4t
$7,000=$3,500(1.0175)^4t
Divide both sides by $3,500
2=(1.0175)^4t
Take the log to base 10 of both sides
log2=4t × log1.0175
0.30103=4t × 0.00753
0.30103=4(0.00753)t
0.30103=0.03012t
t=0.30103/0.03012
t=9.99435
Approximately
9.99 years
Answer:
• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier
Step-by-step explanation:
• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier• The closing of the frontier
Answer:
Yes
Step-by-step explanation:
From equations (1), (2) & (3)
