Answer:
I.
A is a 4 x 5 matrix => A: U -> V, dim U = 5, dim V = 4
Null space is exactly two dimensional plane
dim null (A) = 2
II.
Rank A = dim U - dim Null A = 5 - 2 = 3
III.
Number of linearly Independent columns of A is the rank of A = 3
IV.
Yes, The system Ax = b has no solution sometimes as range of A \neq V
V.
Yes,Sometimes Ax = b has a unique solution
VI.
Yes, sometimes Ax = b has infinitely many solutions
Answer:
that do it make any sense nshshshshshsjshshsnshdjdjjsjskslqpsjdbjdbsjsbsjdhshdhdhshsjsjsjjsjshshshsjs
Step-by-step explanation:
luttdlyjr5ie5uwriyrqkapeyEltezeltslrysrpfhzfhzllzryLRyLryYRh$&ffjzltjdltustudltustzfjxfj
Step-by-step explanation:
I can't see good the picture
Answer: the tuition in 2020 is $502300
Step-by-step explanation:
The annual tuition at a specific college was $20,500 in 2000, and $45,4120 in 2018. Let us assume that the rate of increase is linear. Therefore, the fees in increasing in an arithmetic progression.
The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = $20500
The fee in 2018 is the 19th term of the sequence. Therefore,
T19 = $45,4120
n = 19
Therefore,
454120 = 20500 + (19 - 1) d
454120 - 20500 = 19d
18d = 433620
d = 24090
Therefore, an
equation that can be used to find the tuition y for x years after 2000 is
y = 20500 + 24090(x - 1)
Therefore, at 2020,
n = 21
y = 20500 + 24090(21 - 1)
y = 20500 + 481800
y = $502300