The answer is that the criteria of classification change with the improved understanding of organisms around us. During the time of Aristotle, not much was known about the living organisms. So, he classified them as he observed. Plants were classified into herbs, shrubs and trees; very much like what’s taught to a second grade student. Animals as Enaima and Anaima based on the presence or absence of RBCs. After him, Carolus Linnaeus tried his hand over classification. He came up with the 2 kingdom classification: Plants and Animals. He considered only a set of morphological and physiological criteria to decide the kingdom to which an organism belongs. It includes presence of cell wall, mode of nutrition, contractile vacuole, locomotion and others. Based on these criteria, he included widely differing organisms into a single kingdom, for example, fungi, bacteria, algae, and higher plants were included into plant kingdom just because they have cell wall as a common aspect. Then came, Ernst Haeckel, who came with a third kingdom of Protista to include unicellular organisms. Copeland gave a 4 kingdom classification segregating unicellular organisms into 2 separate kingdoms based on their nuclear structure. R.H. Whittaker came next introducing the most accepted 5 kingdom classification system. You should understand one thing that man’s knowledge of classifying organisms improved with the improving technologies available to him, which he exploited to very effective extent. Carl Woese gave the 6 kingdom classification and 3 domain system based on the 16S rRNA sequence.
Our understanding of organisms around us is improving day by day and the system of classification will also change further in pace with the improvement in technology.
I hope this helps! :D]
~ Kana ^^
The correct answer is: stratosphere.
This is because their temperatures are rising instead of decreasing.
There are 4 primary layers of the atmosphere on Earth:
Troposphere (6-20km), the layer that we live in, where the weather occurs. Only nitrogen and oxygen present.
Stratosphere (20-50 km), where the airplanes fly, contains the ozone layer, which absorbs harmful radiation from the sun.
Mesosphere (50-85 km), the coldest region of Earth’s atmosphere (-100 C), protective layer
Thermosphere (80-690), the hottest (1500 C) and the thickest layer which consists of the ionosphere and the exosphere.
D. wolves catch prey by hunting in packs trust me i got it right
Answer: The temperature of the rainforest does not experience a drastic fall as in the case of the desert.
Explanation:
In the desert the average daytime temperature remains 100°F and that of the rainforest is 85°F. But average monthly temperatures are lower in the case of desert as compared to the rainforest although the vegetation cover is higher in rainforest as compared to desert so humidity is also more. During night in desert temperature drops to an average of 25°F whereas in rainforest during night temperature level does not drop much it drops to only 71°F. Therefore, the average monthly temperature on desert is lower than rainforest.
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>