Perimeter = Side + Side + Side
Side 1 = x
Side 2 = x + 7
Side 3 = 2x-7
Plug into the equation:
84 = x + (x + 7) + (2x-7)
84 = x + x + 7 + 2x - 7
Combine like terms:
84 = 4x
Divide by 4 and solve for x:
21 = x
Side 1 = 21
Side 2 = 28
21+7=28
Side 3 = 35
21(2) - 7 = 42 - 7 = 35
We have:
3x + 4y = 12
The first thing we should do in this case is clear and.
We have then:
4y = -3x + 12
y = (- 3x + 12) / (4)
Rewriting:
y = (- 3/4) x + 3
We evaluate now for x = 4
y = (- 3/4) (4) + 3
y = -3 + 3
y = 0
The ordered pair is:
(x, y) = (4, 0)
Answer:
y = (- 3/4) x + 3
(x, y) = (4, 0)
Answer:
please provide full question......
<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>