Answer:
Population of bacteria at time
is 
Step-by-step explanation:
The complete question is
If
represents the number of bacteria in a culture at time t, how many will there be at time 
Solution
Given
The population of bacteria after time t is equal to 
Population when at time 
We will substitute the value of time in above equation.

Answer:

Step-by-step explanation:
The motion equations that describe the ball are, respectively:
![x = \left[\left(152\,\frac{ft}{s} \right)\cdot \cos 52^{\circ} \right] \cdot t](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Ccos%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t)
![y = 4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{ft}{s^{2}} \right) \cdot t^{2}](https://tex.z-dn.net/?f=y%20%3D%204.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bft%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D)
The time required for the ball to hit the ground is computed from the second equation. That is to say:
![4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{m}{s^{2}} \right) \cdot t^{2} = 0](https://tex.z-dn.net/?f=4.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D%20%3D%200)
Given that formula is a second-order polynomial, the roots of the equation are described below:
and 
Just the first root offers a realistic solution. Then,
.
Answer:
9x-2
Step-by-step explanation:
Since you are adding the two functions, you should first start adding like terms. 4x + 5x is 9x. -8 + 6 is -2. Thus the value of (f+g)(x) is 9x-2.
The angle congruent to ∠CGD is the angle ∠AGF as they are vertical angles.