When we factorise an expression, we are looking for simple factors that multiply to get the original expression. Usually it is very natural to factorise something like a quadratic in x. For example:
x^2 + 3x + 2 = (x+1)(x+2)
But there are other situations where factorisation can be applied. Take this quadratic:
x^2 - 9x = x(x-9)
This second example is closer to the question in hand. Just like x was a common factor to both x^2 and -9x, we are looking for a common factor to both 6b and 24bc. The common factor is 6b.
Hence 6b + 24bc = 6b(1 + 4c).
I hope this helps you :)
Answer:
b looks like the more reziable awnser
Step-by-step explanation:
Answer:
-4
Step-by-step explanation:
Answer:
(a)
The probability that you stop at the fifth flip would be

(b)
The expected numbers of flips needed would be

Therefore, suppose that
, then the expected number of flips needed would be 1/0.5 = 2.
Step-by-step explanation:
(a)
Case 1
Imagine that you throw your coin and you get only heads, then you would stop when you get the first tail. So the probability that you stop at the fifth flip would be

Case 2
Imagine that you throw your coin and you get only tails, then you would stop when you get the first head. So the probability that you stop at the fifth flip would be

Therefore the probability that you stop at the fifth flip would be

(b)
The expected numbers of flips needed would be

Therefore, suppose that
, then the expected number of flips needed would be 1/0.5 = 2.
Answer:
B. 22.75
Step-by-step explanation:
23.87
<u>- 1.12</u>
22.75