Answer:
If you have *dyslexia, then how do you know how to spell so well?
Step-by-step explanation:
X>17
add 7 to 10 and you get 17 :)
The proportion is 4:7 compared to the proportion ?:42. The way I prefer to do this is 7÷4=1.75. 1.75 is the difference between the smaller and larger rectangles. Then take 42÷1.75=24. The perimeter of the smaller rectangle is D. 24.
There are no common factors between the two terms
13
x
and
10
- see explanation below.
Explanation:
First, we can try factoring the constants in each term:
13 is a prime number and therefore can only be factored to 1 and 13.
10 can be factored as (1 x 10) or (2 x 5).
Because there are no common factors other than
1
the constants cannot be factored.
And, because there is no
x
in the second term (10), we cannot factor an
x
out of the two terms.
Therefore this expression cannot be factored.
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
