Answer:
11
Step-by-step explanation:
Given: 
Using PEDMAS rule to solve it.
Now, simplifying:
We first open parenthesis which is (-7) = -7
= 
Now, we evaluate the exponent which is 
Next, we divide -36 by 12 to get -3
=
Next, we multiply -2 and -7 to get 14
= 
Lastly, we add -3 and 14 to get 11
= 
∴ Answer is 11
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is


The given in the problem above is an arithmetic sequence with the first term equal to 4 and the common difference is 5. To determine the number of seats on row 23, use the formula, an = a1 + (n - 1) d
Solving for the 23rd term, an = 4 + (22) 5 = 114 seats
Therefore, the answer is there are 114 seats on the 23rd row.
Welcome Bby (;
Answer:
A=B-5
Step-by-step explanation:
Albert is known as the variable A.
Bill is known as the variable B.
If Albert is 5 years younger than Bill. Then the equation will be
a=b-5
Answer:
where is the question so that I can solve it