Answer:
The particular solution of the differential equation
=
+ 
Step-by-step explanation:
Given differential equation y''(x) − 10y'(x) + 61y(x) = −3796 cos(5x) + 185e6x
The differential operator form 
<u>Rules for finding particular integral in some special cases:-</u>
- let f(D)y =
then
the particular integral
≠ 0
- let f(D)y = cos (ax ) then
the particular integral
f(-a^2) ≠ 0
Given problem

P<u>articular integral</u>:-


P.I =
we will apply above two conditions, we get
=

on simplification we get
= 
= 
= 
=


Now particular solution
P.I = 
P.I =
+ 
The answer is A
hope this helps
Oh man, this is the easiest college level math question that I could find as a middle schooler. I would say 8, but it's probably the wrong answer, so um bye.
Are they suppose to be squared ?