Answer:
a) 0.9964
b) 0.3040
Step-by-step explanation:
Given data:
standard deviation = $90,000
Mean sales price =$345,800
sample mean = $370,000
Total number of sample = 100
calculate z score for [/tex](\bar x = 370000)[/tex]


z = 2.689
P(x<370000) = P(Z<2.689)
FROM STANDARD NORMAL DISTRIBUTION TABLE FOR Z P(Z<2.689) = 0.9964
B)
calculate z score for (\bar x = 350000)


z = 2.133

FROM NORMAL DISTRIBUTION TABLE Z VALUE FOR


SO, = 0.9836 - 0.6796 = 0.3040