Gallons Per Min. because the independent quantity is the minute.
(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
Answer:
f(x)= 10,000(2)^x
Step-by-step explanation:
Exponential equations can be modeled by a(r)^x where a is the initial amount, r is the difference, and x is how many units the equation should be squared by.
The correct answer to this problem is
C=3
Y=3
Answer:
It's different because the experiment is more accurate as it progresses.
Step-by-step explanation:
You'll notice that the higher the numbers get in the experiment the closer it gets to your solution. The theoretical probability of flipping a coin is about 50% heads and 50% tails, but it doesn't always seem like that in an experiment. The experimental probability from your experimentation so far would be 62% of heads and 38% of tails.