Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J
<em>Answer: </em>tellurium (Te)
<em>atomic number = 52 ,</em>
<em>Number of energy levels = 5;</em>
First energy level = 2
Second energy level = 8
Third energy level = 18
Fourth energy level = 18
Fifth energy level = 6
<em>In this electron configuration, 0uter most electrons are 6.</em>
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity