This would prove that gold is an <em>element</em>. No matter how far down you
examine it, you never find any particles of anything except gold.
An example of a different case is salt.
-- Imagine you had a block of salt and decided to cut it in half.
-- If you repeated this process, then eventually, at some point, you'd have
a tiny particle of salt in front of you, just like before. BUT ...
-- Just as you were getting ready to cut this one in half, you'd notice that this
particle of salt is different. It's one atom of sodium stuck to one atom of chlorine,
and if you cut it in half, you would not have ANY salt. <span />
This would prove that salt is a <em><u>compound</u></em>, made of atoms of two or more elements.
The correct option is (D) Gamma (

)
Explanation:Now this question is a tricky one because all of these options are somehow involved in radioactive decay; however, in this case the SYMBOL is required NOT the elements. There are three symbols involved in radioactive decay, which are:
1. α for alpha decay
2. β for beta decay
3. γ for gamma decay
In the options only one symbol is present which is
gamma. Hence option (D) Gamma ( 
) is the correct answer.
-i
Answer:
5.37 N/C
Explanation:
Peak value of magnetic field, Bo = 17.9 nT = 17.9 x 10^-9 T
The electromagnetic wave is produced when an oscillating electric and magnetic field interacts each other perpendicularly.
The direction of propagation of electromagnetic wave is perpendicular to both electric and magnetic field.
the relation between the electric field and magnetic field amplitudes is given by

where, c be the velocity of light, Eo be the peak value of electric field strength, Bo is the peak value of magnetic field strength.

Eo = 5.37 N/C
Since V is 5 times larger than C
A) 0V = 25C
25C to 0C = -25
-25 / 5 = -5
so 0C = -5 V
B)
20V x 5 = 100 C
OPTIONS :
A.) the force that the ball exerts on the wall
B.) the frictional force between the wall and the ball
C.) the acceleration of the ball as it approaches the wall
D.) the normal force that the wall exerts on the ball
Answer: D.) the normal force that the wall exerts on the ball
Explanation: The normal force acting on an object can be explained as a force experienced by an object when it comes in contact with a flat surface. The normal force acts perpendicular to the surface of contact.
In the scenario described above, Erica's tennis ball experiences an opposite reaction after hitting the wall.This is in relation to Newton's 3rd law of motion, which states that, For every action, there is an equal and opposite reaction.
The reaction force in this case is the normal force exerted on the ball by the wall perpendicular to the surface of contact.