What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that t
he number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.] A. log n
B. log log n
C. 100 n
D. n log n
E. n2
F. n3
G. 2n
What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
from a
f(n)=logn
f(2n)=lg(2n)
f(2n)-f(n)=log2n-logn
lo(2*n)=lg2+lgn-lgn
f(2n)-f(n)=lg2+lgn-lgn
f(2n)-f(n)=log2
2.f(n)=lglgn
F(2n)=lglg2n
f(2n)-f(n)=lglg2n-lglgn
lg2n=lg2+lgn
lg(lg2+lgn)-lglgn
3.f(n)=100n
f(2n)=100(2n)
f(2n)/f(n)=200n/100n
f(2n)/f(n)=2
the time will double
4.f(n)=nlgn
f(2n)=2nlg2n
f(2n)-f(n)=2nlg2n-nlgn
f(2n)-f(n)=2n(lg2+lgn)-nlgn
2nLg2+2nlgn-nlgn
2nlg2+nlgn
5.we shall look for the ratio
f(n)=n^2
f(2n)=2n^2
f(2n)/(n)=2n^2/n^2
f(2n)/(n)=4n^2/n^2
f(2n)/(n)=4
the time will be times 4 the initial tiote tat ratio are used because it will be easier to calculate and compare