Answer:
greater then
Step-by-step explanation:
9514 1404 393
Answer:
y = 3.02x^3 -5.36x^2 +5.68x +8.66
Step-by-step explanation:
Your graphing calculator (or other regression tool) can solve this about as quickly as you can enter the numbers. If you have a number of regression formulas to work out, it is a good idea to become familiar with at least one tool for doing so.
__
If you're trying to do this by hand, the x- and y-values give you 4 equations in the 4 unknown coefficients.
a·1^3 +b·1^2 +c·1 +d = 12
a·3^3 +b·3^2 +c·3 +d = 59
a·6^3 +b·6^2 +c·6 +d = 502
a·8^3 +b·8^2 +c·8 +d = 1257
Solving this by elimination, substitution, or matrix methods is tedious, but not impossible. Calculators and web sites can help. The solutions are a = 317/105, b = -75/14, c = 1193/210, d = 303/35. Approximations to these values are shown above.
Divide $55.65 by 7 to get the cost of 1 key chain ($7.95). Then multiply the cost of 1 by 12 and get $95.40
Answer:
a) 0.96
b) 0.016
c) 0.018
d) 0.982
e) x = 2
Step-by-step explanation:
We are given with the Probability density function f(x)= 2/x^3 where x > 1.
<em>Firstly we will calculate the general probability that of P(a < X < b) </em>
P(a < X < b) =
=
=
{ Because
}
=
=
=
=
a) Now P(X < 5) = P(1 < X < 5) {because x > 1 }
Comparing with general probability we get,
P(1 < X < 5) =
=
= 0.96 .
b) P(X > 8) = P(8 < X < ∞) = 1/
- 1/∞ = 1/64 - 0 = 0.016
c) P(6 < X < 10) =
=
= 0.018 .
d) P(x < 6 or X > 10) = P(1 < X < 6) + P(10 < X < ∞)
=
+ (1/
- 1/∞) = 1 - 1/36 + 1/100 + 0 = 0.982
e) We have to find x such that P(X < x) = 0.75 ;
⇒ P(1 < X < x) = 0.75
⇒
= 0.75
⇒
= 1 - 0.75 = 0.25
⇒
=
⇒
= 4 ⇒ x =
Therefore, value of x such that P(X < x) = 0.75 is 2.