ANSWER
x coordinates of the intersection points
EXPLANATION
The given system of equations is:
We want to use the graph of these functions to solve
The point of the intersection of the graph gives the solution to the simultaneous equation above.
Hence the x-coordinates of the intersection points gives the solution set of
The last choice is correct.
Answer:
the third option
Step-by-step explanation:
what does that mean ?
to "rationalize" it is to transform it into a rational number (that is a number that can be described as a/b, and is not an endless sequence of digits after the decimal point without a repeating pattern).
a square root of a not square number is irrational (not rational).
so, what this question is asking us to get rid of the square root part in the denominator (the bottom part).
for this we need to multiply to and bottom with the same expression (to keep the whole value of the quotient the same) that, when multiplied at the bottom, eliminates the square root.
what can I multiply a square root with to eliminate the square root ? the square root again - we are squaring the square root.
so, what works for 9 - sqrt(14) as factor ?
we cannot just square this as
(9- sqrt(14))² = 81 -2sqrt(14) + 14
we still have the square root included.
but remember the little trick :
(a+b)(a-b) = a² - b²
without any mixed elements.
so, we need to multiply (9-sqrt(14)) by (9+sqrt(14)) to get
81-14 = 67 which is a rational number.
therefore, the third answer option is correct.
Answer:
-14
Step-by-step explanation:
x=-14+13
-1
0 is biger than -1
Answer:
We accept H₀ with the information we have, we can say level of ozone is under the major limit
Step-by-step explanation:
Normal Distribution
population mean = μ₀ = 7.5 ppm
Sample size n = 16 df = n - 1 df = 15
Sample mean = μ = 7.8 ppm
Sample standard deviation = s = 0.8
We want to find out if ozono level, is above normal level that is bigger than 7.5
1.- Hypothesis Test
null hypothesis H₀ μ₀ = 7.5
alternative hypothesis Hₐ μ₀ > 7.5
2.-Significance level α = 0.01 we will develop one tail-test (right)
then for df = 15 and α = 0,01 from t -student table we get
t(c) = 2.624
3.-Compute t(s)
t(s) = ( μ - μ₀ ) / s /√n ⇒ t(s) = ( 7.8 - 7.5 )*4/0.8
t(s) = 0.3*4/0.8
t(s) = 1.5
4.-Compare t(s) and t(c)
t(s) < t(c) 1.5 < 2.64
Then t(s) is inside the acceptance region. We accept H₀
Answer:
Pythagorean triple
Step-by-step explanation:
This is usually expressed as a² + b² = c² Integer triples which satisfy this equation are Pythagorean triples. The most well known examples are (3,4,5) and (5,12,13).