Answer:
Option D
Step-by-step explanation:
the height of the first rectangle ( 30 ) over the height of the other rectangle ( 3 ) is 30/3 and equals 10
the length of the first rectangle ( 60 ) over the length of the second rectangle ( 6 ) is 60/6 and equals 10
the ratio of the sides of both rectangles are equivalent therefore the are similar
The correct graph to the inequality is a number line with open dot at <em>negative 3</em> with shading to the left and an open dot at 6 with shading to the right. The correct option is the second option
<h3>Linear Inequalities </h3>
From the question, we are to determine the graph for the given compound inequality
The given compound inequality is
4p + 1 < −11 or 6p + 3 > 39
Solve the inequalities separately
4p + 1 < −11
4p < -11 - 1
4p < -12
p < -12/4
p < -3
OR
6p + 3 > 39
6p > 39 - 3
6p > 36
p > 36/6
p > 6
Thus,
p < -3 OR p > 6
Hence, the correct graph to the inequality is a number line with open dot at <em>negative 3</em> with shading to the left and an open dot at 6 with shading to the right. The correct option is the second option
Learn more on Linear Inequalities here: brainly.com/question/5994230
#SPJ1
The equation of a hyperbola is:
(x – h)^2 / a^2 - (y – k)^2 / b^2 = 1
So what we have to do is to look for the values of the variables:
<span>For the given hyperbola : center (h, k) = (0, 0)
a = 3(distance from center to vertices)
a^2 = 9</span>
<span>
c = 7 (distance from center to vertices; given from the foci)
c^2 = 49</span>
<span>By the hypotenuse formula:
c^2 = a^2 + b^2
b^2 = c^2 - a^2 </span>
<span>b^2 = 49 – 9</span>
<span>b^2 = 40
</span>
Therefore the equation of the hyperbola is:
<span>(x^2 / 9) – (y^2 / 40) = 1</span>
Your answer is B. 91 2/3 pi Units Squared
Hi there. Actually, the image that you have provided us with is a little bit blurry so, if you can make the image a little bit clearer, then I can help you with this question.
Thanks.