Answer:
Kindly check explanation
Step-by-step explanation:
Given that :
Sample size, n = 39
Correlation Coefficient, r = 0.273
The hypothesis test to examine if there is a positive correlation :
H0 : ρ = 0
If there is a positive correlation, then ρ greater than 1
H0 : ρ > 1
The test statistic :
T = r / √(1 - r²)/(n - 2)
T = 0.273 / √(1 - 0.273²)/(39 - 2)
T = 0.273 / 0.1581541
T = 1.726
The Pvalue using a Pvalue calculator can be be obtained using df = n - 2, df = 39 - 2 = 37
The Pvalue = 0.0463
α= .10 and α= .05
At α= .10
Pvalue < α ; Hence, we reject H0 and conclude that a positive correlation exists
At α= 0.05 ;
Pvalue < α ; Hence, we reject H0 and conclude that a positive correlation exists
Okay I'm a little lost because of the . next to the 2 but if they are separate your answers would be
3x+6x=yx (x=0)
c+5+11=12+7 (x=x=−y+c+5+<span>
</span>
Answer:
- f[1] = 3
- f[n] = 2·f[n-1] +4
- 108
Step-by-step explanation:
We observe that first differences of the given numbers are ...
10 -3 = 7
24 -10 = 14
52 -24 = 28
That is, each difference is 2× the previous one. This suggests an exponential relation that has a base of 2.
We notice that doubling a term doesn't give the next term, but gives a value that is 4 less than the next term. So, we can get the next term by doubling the previous one and adding 4.
Then our recursive relation is ...
f[1] = 3 . . . . the first term
f[n] = 2×f[n-1] +4 . . . . double the previous term and add 4
The next term is 2·52 +4 = 108.