The X and Y angles created by lines intersection in the pictures are 18° and 54°.
Based on the picture, angle ∠MON is a right angle hence it has an 90° angle. We then know that the ∠MOA is 72°. Because angle ∠MOA lies within the angle ∠MON, hence we can write the following formula:
∠MON = ∠MOA +∠AON = 90°
∠MON = 72° + ∠AON = 90°
∠AON = 18° ... (i)
If we focus on the line CD being intersected by the line AB, hence we can conclude that the angles form by this intersection will follow these rules:
∠AOD = ∠BOC
∠AOC = ∠BOD
∠AOD + AOC = 180°
∠BOC + ∠BOD = 180°
Based on the picture, we know that:
∠BOC = x
∠AOC = ∠MOA + ∠MOC
∠AOC = 72° + y ...(ii)
∠AOD = ∠AON + ∠NOD
∠AOD = 18° +2x
∠BOC = 3x ... (iii)
Because we already know that ∠BOC = AOD, hence we could rewrite the formula into:
∠BOC = ∠AOD
3x = 18° + 2x
x = 18° ... (iv)
To find the value of y, we need to focus on angle ∠AOC. Based on the previous calculations and formulas, we know that:
∠AOC + ∠BOC = 180° ... (v)
Input equations (ii) and (iv) into (v)
∠AOC + ∠BOC = 180°
(72° + y) + 3x = 180°
72° + y + 3(18°) = 180°
126° + y = 180°
y = 54° ... (vi)
Learn more about the angles by lines intersection here: brainly.com/question/2077876?referrer=searchResults
#SPJ1
Answer:
-8/3 = d OR -2 2/3
Step-by-step explanation:
9d-4d-2d+8=-3d Well first combine all like terms
3d+8=-3d Now isolate the variable by subtracting 4d from both sides
3d(-3d) + 8= -3d (-3d)
8= -3d Divide both sides by -3
-8/3 = d OR -2 2/3
Work:
6/15 = x/1
To get from 15 to 1, you have to divide by 15. So, to make an equal field, divide 6 by 15.
6 : 15 is the same as 2 : 5 or 0.4.
30/80 = x/1
To get from 80 to 1, you have to divide by 80. So, to make an equal field, divide 30 by 80.
30 : 80 is the same as 3 : 8 or .875.
Comparing the two, 30 : 80 is greater than 6 : 15.
Hope this helps. Have a good day.
Answer: how come you don't know the answer what grade are you in
Answer:
Point (1,8)
Step-by-step explanation:
We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.
When a point divides any segment internally in the ratio m:n, the formula is:
![[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
Let us substitute coordinates of point P and Q as:
,




![[x=\frac{4}{4},y=\frac{32}{4}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B4%7D%7B4%7D%2Cy%3D%5Cfrac%7B32%7D%7B4%7D%5D)
Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.