Answer:
<h2>A. -2x³ - 6x² + 9x</h2>
Step-by-step explanation:

Answer:
C=100.5 inches
Step-by-step explanation:
Circumference=2πr where r=16 inches
C=2(3.14)(16)
C=100.5 inches
Answer:
Step-by-step explanation:
Simplify expression with rational exponents can look like a huge thing when you first see them with those fractions sitting up there in the exponent but let's remember our properties for dealing with exponents. We can apply those with fractions as well.
Examples
(a) 
From above, we have a power to a power, so, we can think of multiplying the exponents.
i.e.


Let's recall that when we are dealing with exponents that are fractions, we can simplify them just like normal fractions.
SO;


Let's take a look at another example

Here, we apply the
to both 27 and 


Let us recall that in the rational exponent, the denominator is the root and the numerator is the exponent of such a particular number.
∴
![= \Bigg (\sqrt[3]{27}^{5} \times x^{10} }\Bigg)](https://tex.z-dn.net/?f=%3D%20%5CBigg%20%28%5Csqrt%5B3%5D%7B27%7D%5E%7B5%7D%20%5Ctimes%20x%5E%7B10%7D%20%7D%5CBigg%29)


Answer:
D
Step-by-step explanation:
If y = log x is the basic function, let's see the transformation rule(s):
Then,
1. y = log (x-a) is the original shifted a units to the right.
2. y = log x + b is the original shifted b units up
Hence, from the equation, we can say that this graph is:
** 2 units shifted right (with respect to original), and
** 10 units shifted up (with respect to original)
<u><em>only, left or right shift affects vertical asymptotes.</em></u>
Since, the graph of y = log x has x = 0 as the vertical asymptote and the transformed graph is shifted 2 units right (to x = 2), x = 2 is the new vertical asymptote.
Answer choice D is right.