The range is the interval of y values.
Smallest y values is -9 and the highest y values is 9.
So the range is
Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Hello once again!
When you see a question like this, you need to find the equation of the straight line.
The formular used is y = mx + c
Where
m = slope
c = constant
First find the slope, since it's a straight line, any 2 coordinates can be used.
Now we need to substitude in the slope, and one of the coordinate you used to find the slope, to the formular to find the constant.
In this case i'm using the coordinate
(-2, 16)
y = mx + c
16 = -6(-2) + c
16 = 12 + c
c = 4
∴ The equation of the line is y = -6x + 4
The next step is to simply substitude in the x = 8 to the equation to find y.
y = -6(8) + 4
y = -48 + 4
y = -44
What ???? How are we supposed to understand tht