Go on demos.com and plug in your equation you will get a graph
I’m pretty sure the answer would be B
Let's think about the information in the problem. The problem tells us a few key points:
- The number of rabbits grows exponentially
- We start with 20 rabbits (
,
) - After 6 months (
), we have 100 rabbits (
)
Since we know we are going to be working with an exponential model, we can start with a base exponential model:

is the principal, or starting amount
is the growth/decay rate (in this case, growth)
is the number of months
is the number of rabbits
Based on the information in the problem, we can create two equations:


The first equation tells us that
, or that we start with 20 rabbits. Thus, we can change the second equation to:


Now, we don't know
, but we want to, so let's solve for it.

![r = \sqrt[6]{5}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B6%5D%7B5%7D)
Now, the problem is asking us how many rabbits we are going to have after one year (
), so let's find that:
![a = 20 \cdot (\sqrt[6]{5})^{12}](https://tex.z-dn.net/?f=a%20%3D%2020%20%5Ccdot%20%28%5Csqrt%5B6%5D%7B5%7D%29%5E%7B12%7D)



After one year, we will have 500 rabbits.
12/16
If you divide 12 by 4 you get 3 and if you divide 16 by 4 you get 4 so that would be 3/4
Answer:11/6
Step-by-step explanation: hope it helped if it dint tell me what exactly what i need to do and ill do it :)