I´d say "d" is the distance from the eye to the wall.
Now substracting 1.2-1 you´ll get the distance of the wall of the smallest triangle = 0.2 And you do 1.5-0.2= 0.3 that´s the distance of the wall of the other triangle. Then you solve everything with Pitagoras theorem. You have 2 rectangle triangles.
B+alfa=45°
tan^-1(0.2/d)=B
tan^-1(1.3/d)=alfa
THEN:
tan^-1(0.2/d)+tan^-1(1.3/d)=45°
Now you have 3 ecs and 3 variables.
alfa,B and "d"
Problem 1, part (a)
<h3>Answer: False</h3>
For instance, 200 feet in real life can be reduced to scale down to say 2 inches on paper. So we have a reduction going on, and not an enlargement.
====================================================
Problem 1, part (b)
<h3>Answer: true</h3>
This is because a scale drawing involves similar polygons. This is true whenever any dilation is applied.
====================================================
Problem 2
I'm not sure how your teacher wanted you to answer this question. S/he didn't give you any numbers for the side lengths of the polygon. The angle measures are missing as well.
Answer:
<h2>3600</h2>
Step-by-step explanation:
Shift the decimals of both 213480 and 59.3 to the right by 2 decimal places. (This is needed to convert 59.3 to 5930, since long division must divide by a whole number.)
21348000÷5930
Therefore, 213480\div 59.3=3600213480÷59.3=3600.
Answer:
<em><u>The</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>9x</u></em><em><u>²</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3x</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>2</u></em><em><u>.</u></em>
Step-by-step explanation:
1) Collect like terms.

2) Simplify.

<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>9x</u></em><em><u>²</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3x</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>2</u></em>.