Answer:
The probability that a student is proficient in mathematics, but not in reading is, 0.10.
The probability that a student is proficient in reading, but not in mathematics is, 0.17
Step-by-step explanation:
Let's define the events:
L: The student is proficient in reading
M: The student is proficient in math
The probabilities are given by:


The probability that a student is proficient in mathematics, but not in reading is, 0.10.
The probability that a student is proficient in reading, but not in mathematics is, 0.17
Answer:
and


Step-by-step explanation:
Let the variables be: x and y
The equations can be modelled as:
and

To solve for x and y, we have:
Make x the subject in 

Substitute
in 


Collect like terms


Divide both sides by 2

Substitute
in 


So, we have:

The expression of the factored form of 2x2+25x + 63 is mathematically given as
(x+7)(2x+7)
<h3>What is the expression of the factored form of 2x2+25x + 63?</h3>
Question Parameter(s):
Expression 2x^2+25x + 63?
The expression of the factored form will bear the roots of the expression repressented in standard form
Generally, the equation for the expression is mathematically given as
2x^2+25x + 63?
Therefore
2x^2+25x + 63?
x(2x+7)+9(2x+7)
(x+7)(2x+7)
In conclusion, The expression is
(x+7)(2x+7)
Read more about Arithmetic
brainly.com/question/22568180