Answer:
fractions
Step-by-step explanation:
4/8 of a pie is the same as 1/2 of a pie
Answer:
(5/2, 1/4)
Step-by-step explanation:
See Image below:)
Answer:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)
Step-by-step explanation:
Solve for u:
(x sin(A) - u cos(A))^2 + (x cos(A) + y sin(A))^2 = x^2 + y^2
Subtract (x cos(A) + y sin(A))^2 from both sides:
(x sin(A) - u cos(A))^2 = x^2 + y^2 - (x cos(A) + y sin(A))^2
Take the square root of both sides:
x sin(A) - u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
-u cos(A) = sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) - x sin(A) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or x sin(A) - u cos(A) = -sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Subtract x sin(A) from both sides:
u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or -u cos(A) = -x sin(A) - sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2)
Divide both sides by -cos(A):
Answer: u = x tan(A) - sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) or u = sec(A) sqrt(x^2 + y^2 - (x cos(A) + y sin(A))^2) + x tan(A)
Let the height of the trees are h1,h2 and h3,
Then,we know that
Mean height=(h1+h2+h3)/3
Answer:
i think a is 6912:)
i thin b is 359424:)
Step-by-step explanation:
i'm so sorry if it's wrong <3