I’m pretty sure it would be 4, since y= (x) which would be the numbers on the chart and then add 2
ex: y= (2) + 2
y= 4 and so on
To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term
Solving #19
<u>Take y-values from the graph</u>
- a) (g·f)(-1) = g(f(-1)) = g(1) = 4
- b) (g·f)(6) = g(f(6)) = g(2) = 2
- c) (f·g)(6) = f(g(6)) = f(5) = 1
- d) (f·g)(4) = f(g(4)) = f(2) = -2
Here's the work and the answer. I hope this helps.