Answer:
Please, see the attached files.
Step-by-step explanation:
Please, see the attached files.
Thanks.
Answer:
1. |y| sqrt(10)
2. |x| sqrt(x)
3. a^2 sqrt(a)
4. 4 |y|^3 sqrt(3)
5. 1/4 *|x| sqrt(3x)
Step-by-step explanation:
1. sqrt(10y^2)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(y^2) sqrt(10)
|y| sqrt(10)
We take the absolute value of y because -y*-y = y^2 and the principle square root is y
2. sqrt(x^3)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(x^2) sqrt(x)
|x| sqrt(x)
3. sqrt(a^5)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(a^4) sqrt(a)
a^2 sqrt(a)
4. sqrt(16 y^7)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(16) sqrt(y^6)sqrt(y)
4 |y|^3 sqrt(3)
5. sqrt(3/16x^3)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(1/16) sqrt(x^2)sqrt(3x)
1/4 *|x| sqrt(3x)
The answer would be 5 2/5
Hello! The formula for finding slope is y2- y1 / x2- x1. That means subtract the first y-coordinate from the second y-coordinate and the first x-coordinate from the second x-coordinate. Plug in the values to have it like this: -1 - 4 / 2 - (-3). When you subtract the numbers, you get -5/5 or just simply -1. The slope of the line is -1.