The average speed :
1. 10.44 m/s
2. 10.42 m/s
3. 9.26 m/s
The distance 100 m have the greatest average speed
<h3>
Further explanation
</h3>
Given
Distance and time of runner
Required
Average speed
Solution
<em>
Average speed : total distance : total time
</em>
<em />
1. d = 100 m, t = 9.58 s
Average speed : 100 : 9.58 = 10.44 m/s
2. d=200 m, t=19.19 s
Average speed : 200 : 19.19 = 10.42 m/s
3. d=400 m, t = 43.18 s
Average speed : 400 : 43.18 = 9.26 m/s
The distance 100 m have the greatest average speed
Answer:
Bromine
Explanation:
To identify the gas, you first need to find the moles of the gas. You can do this using the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol *K)
-----> T = temperature (K)
After converting mL to L and Celsius to Kelvin, you can plug the values into the equation and simplify to find the moles.
P = 1.98 atm R = 0.08206 atm*L/mol *K
V = 752 mL / 1,000 = 0.752 L T = 62 °C + 273.15 = 335.15 K
n = ? moles
PV = nRT
(1.98 atm)(0.752 L) = n(0.08206 atm*L/mol *K)(335.15 K)
1.48896 = n(27.5024)
0.0541 = n
You can identify the gas by determining the molar mass of the gas, which is specific to each element. The molar mass exists as a ratio that compares the mass per 1 mole.
Molar Mass = mass / moles
Molar Mass = 4.32 g / 0.0541 moles
Molar Mass = 79.8 g/mol
This molar mass is closest to the molar mass of bromine (79.904 g/mol).
Answer:
The law of conservation of mass states that in a closed system, mass is neither created nor destroyed during a chemical or physical reaction. The law of conservation of mass is applied whenever you balance a chemical equation.
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
It is applicable in a chemical when the the mass of the products in a chemical reaction is equal to the mass of the reactants.
But it is not applicable in a nuclear fusion as some of the mass is generated as energy.
Answer:
Fe₂O₃ + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂O
Explanation:
Step 1: Write out unbalanced reaction
Fe₂O₃ + H₂SO₄ → Fe₂(SO₄)₃ + H₂O
Step 2: Balance
We need the same number of SO₄²⁻ on each side
Fe₂O₃ + 3H₂SO₄ → Fe₂(SO₄)₃ + H₂O
Now we need the same amount of H⁺ on each side
Fe₂O₃ + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂O
Answer:
n = 3 for similar blue light
Explanation:
The principle applied here is energy levels and energy changes. There are different energy levels depending on the value of the integer as explained by Max planck - a german physicist in 1900, Max planck claimed that electrons in an atom were presumed to be oscillating with a frequency f, then there enrrgy will be given by the plancks equation ; E =hf, where h is the plancks constant.
In general energy of each level can be written as E =nhf