Answer:
i think it will increase the rate of chemical reaction as pressure is directly proportional to the reactivity of gas.
Can you please provide a clearer image?
Thanks
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
B) 40%
The balanced equation indicates that for every 3 moles of H2 used, 2 moles of NH3 will be produced. So the reaction if it had 100% yield would produce (2.00 / 3) * 2 = 1.333333333 moles of NH3. But only 0.54 moles were produced. So the percent yield is 0.54 / 1.3333 = 0.405 = 40.5%. This is a close enough match to option "b" to be considered correct.
Answer:
The basic steps of the scientific method are: 1) make an observation that describes a problem, 2) create a hypothesis, 3) test the hypothesis, and 4) draw conclusions and refine the hypothesis.