Answer:
a, b
Explanation:
For a, pi is irrational.
For b, sqrt(24) is not a perfect square and therefore irrational.
For c and d, there are no irrational numbers.
If this helped please consider marking me brainliest.
The answer is:
There are 595 calories in a banana split To find this we first need to set up our equation:

, where x= calories in a banana split

----------------Add 5 to both sides
595=x-------------------Multiply 7 to both sides to get rid of the fraction
So, there are 595 calories in a banana split
Hope this helps! :)
The change in the first week is .375 pounds =. Divide 3/4 by 2
<span>The fact that Helen’s indifference curves touch the axes should immediately make you want to check for a corner point solution. To see the corner point optimum algebraically, notice if there was an interior solution, the tangency condition implies (S + 10)/(C +10) = 3, or S = 3C + 20. Combining this with the budget constraint, 9C + 3S = 30, we find that the optimal number of CDs would be given by 3018â’=Cwhich implies a negative number of CDs. Since it’s impossible to purchase a negative amount of something, our assumption that there was an interior solution must be false. Instead, the optimum will consist of C = 0 and Helen spending all her income on sandwiches: S = 10. Graphically, the corner optimum is reflected in the fact that the slope of the budget line is steeper than that of the indifference curve, even when C = 0. Specifically, note that at (C, S) = (0, 10) we have P C / P S = 3 > MRS C,S = 2. Thus, even at the corner point, the marginal utility per dollar spent on CDs is lower than on sandwiches. However, since she is already at a corner point with C = 0, she cannot give up any more CDs. Therefore the best Helen can do is to spend all her income on sandwiches: ( C , S ) = (0, 10). [Note: At the other corner with S = 0 and C = 3.3, P C / P S = 3 > MRS C,S = 0.75. Thus, Helen would prefer to buy more sandwiches and less CDs, which is of course entirely feasible at this corner point. Thus the S = 0 corner cannot be an optimum]</span>
Arrange in ascending order:-
3, 5, 23, 27, 35, 37, 45, 48, 49
There are 9 values so the median = middle 5th value
= 35 Answer