Answer:
d. 944 mm^3
Step-by-step explanation:
The area of a circle is given by ...
A = πr² . . . . . where r is the radius, half the diameter
The area of a circle with diameter 9 mm is ...
A = π(4.5 mm)² = 20.25π mm²
The area of the semi-circular end of the prism is half this value, or ...
semicircle area = (1/2)(20.25π mm²) = 10.125π mm² ≈ 31.809 mm²
__
The area of the rectangular portion of the end of the prism is the product of its width and height:
A = wh = (9 mm)(6 mm) = 54 mm²
Then the base area of the prism is ...
base area = rectangle area + semicircle area
= (54 mm²) +(31.809 mm²) = 85.809 mm²
__
This base area multiplied by the 11 mm length of the prism gives its volume:
V = Bh = (85.809 mm²)(11 mm) ≈ 944 mm³
The volume of the composite figure is about 944 mm³.
Answer:
2x^3−7x^2+16x−15
Step-by-step explanation:
(2x−3)(x^2−2x+5)
=(2x+−3)(x^2+−2x+5)
=(2x)(x^2)+(2x)(−2x)+(2x)(5)+(−3)(x^2)+(−3)(−2x)+(−3)(5)
=2x^3−4x^2+10x−3x^2+6x−15
=2x3−7x2+16x−15
Answer:
The one in the right top hand corner. It shows one arrow pointing up and one to the right.
Step-by-step explanation:
I can't really explain it.
Answer:
Third option
Step-by-step explanation:
We can't factor this so we need to use the quadratic formula which states that when ax² + bx + c = 0, x = (-b ± √(b² - 4ac)) / 2a. However, we notice that b (which is 6) is even, so we can use the special quadratic formula which states that when ax² + bx + c = 0 and b is even, x = (-b' ± √(b'² - ac)) / a where b' = b / 2. In this case, a = 1, b' = 3 and c = 7 so:
x = (-3 ± √(3² - 1 * 7)) / 1 = -3 ± √2