1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
9

Plz help me get the right answer to these ASAP

Mathematics
2 answers:
Ghella [55]3 years ago
7 0

b ≥ - 16

given \frac{1}{4} b ≥ - 4

multiply both sides by 4 to eliminate the fraction

b ≥ - 16


ASHA 777 [7]3 years ago
4 0

Answer:

<h2>b ≥ -16</h2>

Step-by-step explanation:

\dfrac{1}{4}b\geq-4\qquad\text{multiply both sides by 4}\\\\4\!\!\!\!\diagup^1\cdot\dfrac{1}{4\!\!\!\!\diagup_1}b\geq(4)(-4)\\\\b\geq-16

You might be interested in
Which statement(s) is (are) correct?
Anna71 [15]

Answer:

<em>statements 3 and 4 are correct.</em>

Step-by-step explanation:

(1)

The probability of choosing cured pasta and bear= probability that the card is king.

Hence, The probability of choosing cured pasta and bear=\dfrac{4}{52}=\dfrac{1}{13}

Probability of choosing baked cucumber and lime mutton=probability that the card is 3.

as there are 4 cards that are '3'.

Hence Probability of choosing baked cucumber and lime mutton=\dfrac{4}{52}=\dfrac{1}{13}

as both the probabilities are equal.

Hence statement 1 is incorrect.

(2)

The probability of choosing gooseberry & passion fruit cheesecake= Probability taht the card is ace.

as there are 4 cards which are ace out of 52 cards.

Hence, The probability of choosing gooseberry & passion fruit cheesecake=\dfrac{4}{52}=\dfrac{1}{13}

probability of choosing poached fennel & lemon alligator=Probability that the card is a face card.

As there are 12 face cards out of 52 cards.

Hence, probability of choosing poached fennel & lemon alligator=\dfrac{12}{52}=\dfrac{3}{13}

Hence, the probability of choosing gooseberry and passion fruit cheesecake is smaller than the probability of choosing poached fennel & lemon alligator.

Hence statement 2 is false.

(3)

The probability of choosing a praline wafer=probability that the card is a diamond.

as there are 13 diamond cards out of 52 cards.

The probability of choosing a praline wafer=\dfrac{13}{52}=\dfrac{1}{4}

the probability of choosing poached fennel & lemon alligator=Probability that the card is a face card.

As there are 12 face cards out of 52 cards.

Hence, probability of choosing poached fennel & lemon alligator=\dfrac{12}{52}=\dfrac{3}{13}

Hence, The probability of choosing a praline wafer is greater than the probability of choosing poached fennel & lemon alligator.

Hence statement 3 is correct.

(4)

The probability of choosing pressure-cooked mushroom & garlic chicken =probability that the card is red.

As there are 26 red cards out of 52 cards.

Hence,  

The probability of choosing pressure-cooked mushroom & garlic chicken =\dfrac{26}{52}=\dfrac{1}{2}

probability of choosing an oven-baked apple & lavender calzone =probability that the card is black.

As there are 26 red cards out of 52 cards.

Hence,  probability of choosing an oven-baked apple & lavender calzone=\dfrac{26}{52}=\dfrac{1}{2}

Hence, The probability of choosing pressure-cooked mushroom & garlic chicken and the probability of choosing an oven-baked apple & lavender calzone are the same.

Hence statement 4 is true.

(5)

The probability of choosing pressure-cooked mushroom & garlic chicken =probability that the card is red.

As there are 26 red cards out of 52 cards.

Hence,  

The probability of choosing pressure-cooked mushroom & garlic chicken =\dfrac{26}{52}=\dfrac{1}{2}

the probability of choosing a praline wafer=probability that the card is a diamond.

as there are 13 diamond cards out of 52 cards.

The probability of choosing a praline wafer=\dfrac{13}{52}=\dfrac{1}{4}

Hence, the probability of choosing pressure-cooked mushroom & garlic chicken and the probability of choosing a praline wafer are not same.

Hence, statement 5 is not correct.


6 0
3 years ago
KEVIN'S GAS TANK IS 1/6 FULL. AFTER HE BUYS 14 GALLONS OF GAS, IT IS 3/4 FULL. HOW MANY GALLONS CAN KEVIN'S TANK HOLD?
Reika [66]

\frac 1 6 t  + 14 = \frac 3 4 t


14 = (\frac 3 4 - \frac 1 6)t = (\frac 9{12} - \frac{2}{12}) t = \frac {7}{12} t


t = \frac{12}{7} (14) = 24


Answer: 24 gallons


Check: (1/6)24=4, 4+14=18, 18/24=3/4, good


5 0
3 years ago
Read 2 more answers
23% put into a fraction
never [62]

Answer:

23/100

Explanation:

23% is 23 out of 100. 23/100 can not be simplified further.

3 0
2 years ago
Read 2 more answers
Dont get it wrong, if its wrong i fail, explain how you got your answer
damaskus [11]

Answer: 50.24

Area of a circle is pi times r^2

The r is 1/2 the d

So 8/2 = 4

Pi times 4^2= 50.24

7 0
3 years ago
Which statement is true about the equation fraction 3 over 4z − fraction 1 over 4z + 1 = fraction 2 over 4z + 1?
nata0808 [166]

(A- No solution)

Ignore the folloqing;

(12345678901234567890)

3 0
3 years ago
Read 2 more answers
Other questions:
  • The sum of the measures of the angles of a triangle is 180. The sum of the measures of the second and third angles is three time
    14·1 answer
  • What is ratio of 10 to 36?
    6·1 answer
  • True or false???????
    9·2 answers
  • Combine the like terms to make a simpler expression:<br> -n + (-3) + 3n +5
    9·1 answer
  • Courtney school is having a family game night each table has 4 players there are 7 tables in all how many players are at the gam
    5·2 answers
  • Can someone find the missing numbers????<br><br><br> Plz answer
    9·1 answer
  • In comparison to 2/3 where would 4/6 on number line
    12·2 answers
  • In the data set below, what is the median
    10·1 answer
  • The following distribution is not a probability distribution because
    9·1 answer
  • Complete the table below
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!