Answer:

Step-by-step explanation:
The populational growth is exponential with a factor of 1.12 each year. An exponential function has the following general equation:

Where 'a' is the initial population (25,000 people), 'b' is the growth factor (1.12 per year), 'x' is the time elapsed, in years, and 'y(x)' is the population after 'x' years.
Therefore, the function P(t) that models the population in Madison t years from now is:
Answer:
6/21.
Step-by-step explanation:
let the rational number be 2x/7x.
2x + 4 / 7x - 2 = 10 /19
Cross multiply:
19(2x + 4) = 10(7x - 2)
38x + 76 = 70x - 20
96 = 70x - 38x
32x = 96
x = 3.
So the rational number is 2*3/ 7*3
= 6/21.
Answer:converge at 
Step-by-step explanation:
Given
Improper Integral I is given as

integration of
is -
![I=\left [ -\frac{1}{x}\right ]^{\infty}_3](https://tex.z-dn.net/?f=I%3D%5Cleft%20%5B%20-%5Cfrac%7B1%7D%7Bx%7D%5Cright%20%5D%5E%7B%5Cinfty%7D_3)
substituting value
![I=-\left [ \frac{1}{\infty }-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)
![I=-\left [ 0-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%200-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)

so the value of integral converges at 