The graph looks like this, on the enclosed pic:
One feature is that it's periodic and torn (has cut-off points), meaning the domain is the same as in case of tan(x): x€R and x =/= π/2+πn.
The range equals the range of arcsin(x): -π/2<=y<=π/2 OR y€[-π/2;π/2]
Hope could understand and if it helped! :)
The value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
<h3>What are perfect squares trinomials?</h3>
They are those expressions which are found by squaring binomial expressions.
Since the given trinomials are with degree 2, thus, if they are perfect square, the binomial which was used to make them must be linear.
Let the binomial term was ax + b(a linear expression is always writable in this form where a and b are constants and m is a variable), then we will obtain:

Comparing this expression with the expression we're provided with:

we see that:

Thus, the value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
Learn more about perfect square trinomials here:
brainly.com/question/88561
Answer:
Neither
Step-by-step explanation:
Answer:
B) Unlikely
Step-by-step explanation:
It is Unlikely that this will happen.