1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
11

6x — 4 > 14or3х + 10 < 4

Mathematics
1 answer:
Ipatiy [6.2K]3 years ago
3 0

9514 1404 393

Answer:

  x < -2  or  3 < x

Step-by-step explanation:

<u>6x -4 > 14</u>

  6x > 18 . . . . add 4

  x > 3 . . . . . . divide by 6

<u>3x +10 < 4</u>

  3x < -6 . . . . subtract 10

  x < -2 . . . . . divide by 3

The solution is the union of disjoint sets:

  x < -2  or  x > 3

You might be interested in
&lt;B<br>Round your answer to the nearest hundredth.<br>2<br>А<br>3<br>?<br>B​
Svet_ta [14]

Answer:

∠ B ≈ 41.81°

Step-by-step explanation:

Using the sine ratio in the right triangle

sin B = \frac{opposite}{hypotenuse} = \frac{AC}{AB} = \frac{2}{3} , thus

B = sin^{-1}(\frac{2}{3} ) ≈ 41.81° ( to the nearest hundredth )

5 0
3 years ago
Which of the values for x and y make the equation 2x + 3y + 4 = 15 true?
natima [27]
2(1)+3(3)+4=15
2+9+4=15
Or
2(4)+3(1)+4=15
8+3+4=15
So either one would work
7 0
4 years ago
Determine which relation is a function. Question 13 options: a) {(3, 0), (– 2, – 2), (7, – 2), (– 2, 0)} b) c) y = 15x + 2 y = 1
antiseptic1488 [7]

Answer:

x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5

Step-by-step explanation:Solving for x. Want to solve for y or solve for d instead?

1 Simplify  0-20−2  to  -2−2.

3,-2,-27,-2-2,02y=1,5x+2d3,−2,−27,−2−2,02y=1,5x+2d

2 Simplify  -2-2−2−2  to  -4−4.

3,-2,-27,-4,02y=1,5x+2d3,−2,−27,−4,02y=1,5x+2d

3 Subtract 2d2d from both sides.

3-2d,-2-2d,-27-2d,-4-2d,02y-2d=1,5x3−2d,−2−2d,−27−2d,−4−2d,02y−2d=1,5x

4 Divide both sides by 1,51,5.

\frac{3-2d}{1},5,\frac{-2-2d}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2−2d

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−4−2d

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

5 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−4−2d

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

6 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{02y-2d}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​02y−2d

​​ ,5=x

7 Factor out the common term 22.

\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x

​1

​

​3−2d

​​ ,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

8 Simplify  \frac{3-2d}{1}

​1

​

​3−2d

​​   to  (3-2d)(3−2d).

3-2d,5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,

​1

​

​−2(1+d)

​​ ,5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

9 Simplify  \frac{-2(1+d)}{1}

​1

​

​−2(1+d)

​​   to  (-2(1+d))(−2(1+d)).

3-2d,5,-2(1+d),5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,

​1

​

​−27−2d

​​ ,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

10 Simplify  \frac{-27-2d}{1}

​1

​

​−27−2d

​​   to  (-27-2d)(−27−2d).

3-2d,5,-2(1+d),5,-27-2d,5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,

​1

​

​−2(2+d)

​​ ,5,

​1

​

​2(y−d)

​​ ,5=x

11 Simplify  \frac{-2(2+d)}{1}

​1

​

​−2(2+d)

​​   to  (-2(2+d))(−2(2+d)).

3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,

​1

​

​2(y−d)

​​ ,5=x

12 Simplify  \frac{2(y-d)}{1}

​1

​

​2(y−d)

​​   to  (2(y-d))(2(y−d)).

3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5=x

13 Switch sides.

x=3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5

Done

5 0
3 years ago
What Does The Number was 25 in periodic
ivann1987 [24]

Answer:

Manganese is a metal that is atomic number 25 on the periodic table with the element symbol Mn.

Step-by-step explanation:

7 0
3 years ago
Help me please [giving brainliest to best answer with step by step]
ollegr [7]

Hi there!

\large\boxed{3\text{ }  \frac{3}{4} cm^3}

Knowing that one cube has side-lengths of 1/2, we can calculate the dimensions for the prism:

Length: 1/2 × 5 = 2.5 cm

Height: 1/2 × 3 = 1.5 cm

Width: 1/2 × 2 = 1 cm

Use this formula to solve for the volume:

V = l × w × h

Thus:

V = 2.5 × 1.5 × 1 = 3.75 cm³

Convert to fraction:

75/100 = 3/4

Thus, the volume in mixed-numbers is 3 3/4 cm³.

7 0
3 years ago
Other questions:
  • the gasoline tank and Allison's car holds 12 gallons of gas on a trip the car used one fourth of a tank of gas if the tank was f
    6·1 answer
  • What is X and Y ? Please as fast as you can answer this
    11·1 answer
  • Rachel filled al 155 shelved in the room with books she place 9 books on each shelf how books did she place on all 15 shelves
    13·1 answer
  • Rectangle R was dilated to form rectangle R prime. Rectangle R has a length of 8 and width of 4. Rectangle R prime has a length
    15·2 answers
  • 2x² + 3y2 = 44<br> 3x – 4y2 = 32<br> Solve the system of equation
    13·1 answer
  • I NEED HELP ILL GIVE TONS OF POUNTS find the mean of the data in the pictograph below​
    9·2 answers
  • Which equation can be used to find the area of the parrellogram shown
    8·2 answers
  • Somebody please help
    5·1 answer
  • Write the equation of the line Perpendicular to g (x) = 3x – 0.77, going through the point (0,-5). Show all work.​
    8·1 answer
  • The second term of arithematic proggresions 7. and the sum of the first four termd is 12 find
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!