Answer:
Acid Sulfate Soil
Explanation:
This type of soil is represented in some soils with characteristics of high sulfate levels and high acidity.
Full question attached
Answer/ Explanation:
The original DNA sequence has a point mutation changing a G to a T. The resulting mRNA produced is always complementary to the DNA from which it is synthesised, so the original mRNA sequence has a T, whereas the mutated mRNA has a U. The tRNA is complementary to the mRNA, so the original has a G, and the mutated has a T.
<h3>Original DNA</h3>
GTTGGCGAATGAACGGAGGCTGACGTCTAAGCCTAGAAAAATTGG
RNA
CAACCGCUUACUUGCCUCCGACUGCAGAUUCGGAUCUUUUUAACC
tRNA
GUUGGCGAAUGAACGGAGGCUGACGUCUAAGCCUAGAAAAAUUGG
<h3>_______________________________________________</h3><h3>Mutated DNA</h3>
GTTGGCGAATGAACTGAGGCTGACGTCTAAGCCTAGAAAAATTGG
RNA
CAACCGCUUACUUGUCUCCGACUGCAGAUUCGGAUCUUUUUAACC
tRNA
GUUGGCGAAUGAACTGAGGCUGACGUCUAAGCCUAGAAAAAUUGG
This is a point mutation called a substitution. This does not affect the entire sequence of the protein, because the mutation is "in frame" meaning the mRNA sequence is still read in the same way by the protein producing machinery. However, it does change the 5th codon from UGC to UGU. If we look up the genetic code, we can see that both of these codons code for cysteine, so there will be no change in the amino acid sequence of the protein
Answer:
Genetic drift
Explanation:
Genetic drift is defined as the random change in allelic frequencies from one generation to the other.
Genetic drift is an evolutionary mechanism in which the allelic frequencies in a population change through many generations. Its effects are harder in a small-sized population, meaning that this effect is inversely proportional to the population size. Genetic drift results in some alleles loss, even those that are beneficial for the population, and the fixation of some other alleles by an increase in their frequencies. The final consequence is to <u>randomly</u> fixate one of the alleles. Low-frequency alleles are the most likely to be lost. Genetic drift results in a loss of genetic variability within a population.
Genetic drift has important effects on a population when this last one reduces its size dramatically because of a disaster -bottleneck effect- or because of a population split -founder effect-.