Answer : The volume of
is 14.784 L.
Solution : Given,
Mass of Aluminium = 6 g
Molar mass of Aluminium = 27 g/mole
First we have to calculate the moles of aluminium.
Moles of Al = 
The given balanced reaction is,

From the reaction, we conclude that
2 moles of Al react with the 6 moles of 
0.22 moles of Al react with
of 
At STP, 1 mole contains 22.4 L volume
As, 1 mole of
contains 22.4 L volume of 
0.66 moles of
contains
volume of 
Therefore, the volume of
is 14.784 L.
Answer: Elements in Group 2
Explanation: The periodic table was arranged by Dmitri Mendeleev specifically around similarites in their chemical behaviors. He found that as atomic number increases, at some point an element starts to react in a manner similar to a previous one. When that happened, he would place the larger element under the smaller one, and eventually noticed a periodicity in the table. Elements in a column (Groups) had similiar chemical properties. We know today that these similarities are due to the electron configuration, and that these configurations repeat themselves. He left gaps in the table when he could find an existing element with properties similar to others in that group. I big leap of faith, but it worked. Elements for those missing boxes were eventually discovered.
Answer:
+1, lose, 1, 4s, 4s and 3d
Explanation:
<em>An element with the valence electron configuration 4s¹ would form a monatomic ion with a charge of </em><em>+1</em><em>. In order to form this ion, the element will </em><em>lose</em><em> </em><em>1 </em><em>electron from the </em><em>4s </em><em>subshell.</em>
The corresponding oxidation reaction is:
K ⇒ K¹⁺ + 1 e⁻
[Ar] 4s¹ ⇒ [Ar]
<em>If an element with the valence configuration 4s² 3d⁶ loses 3 electrons, these electrons would be removed from the </em><em>4s and 3d</em><em> subshell(s).</em>
The corresponding oxidation reaction is:
Fe ⇒ Fe³⁺ + 3 e⁻
[Ar] 4s² 3d⁶ ⇒ [Ar] 4s⁰ 3d⁵